Do you get stuck doing PIC timer calculations,juggling between datasheet,
calculator and your design requirements? If so then you need some tools to
automate the process.
Calculations
Typically you will need to focus on the end result which is usually to make
the timer generate a frequency or measure a time period. This is fairly
difficult when you first have to find the information in the datasheet and then
account for prescalers and postscalers etc.
The main point about timers is that an interrupt is generated when the timer
count overflows i.e. for an 8 bit timer that means when the count value goes
from 256 to zero.
PIC Timer 0 : Calculation example
Here is an example of the typical calculations for creating an 18ms
interrupt repeat rate using PIC Timer 0.
Selecting a prescaler ratio of 1:128 gives the following interrupt period (with
Fosc/4 or 4MHz/4 = 1MHz) and using the maximum overflow from Timer 0.
1/(1MHz/128/256) = 32.768ms
Obviously this is longer than you need but you can cut it down by changing the
overflow point (in the interrupt). To do this you need the period of the
frequency input to Timer 0 which is:
1/(1MHz/128) = 128us
This is the period of time for each count in Timer 0 i.e.
256 * 128us = 32.768ms
So by manipulating the overflow point you can set the overall interrupt period.
The required period is 18ms so using some calculations:
18ms/128us = 140.625 (nearest integer value is 141)
This is the number of counts required after which the interrupt is generated.
To use it Timer 0 it is loaded in the following manner:
TMR0 = 256-141+2; // Need 141 but Timer 0 looses 2 at load.
From this point on every 128us is counted by Timer 0 and it will overflow after
141 counts (or 18ms)
141 * 128us = 18ms(approx), The precise period is 18.048ms.
Note: "When writing to TMR0, two instruction clock cycles are lost. Often you have a specific time period you want to count, say 100 decimal. In that case you might put 156 into TMR0 (256 - 100 = 156). However, since two instruction cycles are lost when you write to TMR0 (for internal logic synchronization), you should actually write 158 to the timer".[source mid-range reference manual : DS31011]
Note: If you look at the Timer 0 block diagram in the datasheet the internal clock synchronization uses Fosc/4, so do not add 2 when calculating the period if you are not using the internal clock as a clock source! The main calculation will use your external clock and you need to add 2 Fosc/4 cycles to that period.
TCL Scripts for PIC Timer calculation
Every time you use any built in PIC timer you have to do these type of
calculations and the hardware in each timer is different and you'll also have
to do battle with interrupts.
To make the process easy you can use three on-line (free) interactive script
modules written in TCL (Tool Command Language). They operate in a similar way
to a Java applets.
Each of these scripts is geared towards the most typical use of each timer and
lets you change prescaler, postscaler or register value using slider controls.
This makes it easy to experiment with different values as the result is
immediately displayed in the web page (frequency and period are displayed from
each part of the timer e.g. after the prescaler, after the register, after the
postscaler).
The above calculation is now trivial just move the sliders around until you get
close to your desired PIC timer period and then adjust the timer value to home
in on the correct answer.
So you can do what-if type operations (all without a calculator in sight) e.g.
'I need a 15ms repeat rate'.
From Timer 2 the closest I could get is 15.136 (took 1 minutes to test) -
perhaps I'll try timer 1 - Ah that gives an exact 15ms (took 30 seconds to
test). Just check with Timer 0 - this gives 15.040ms (took ~30 seconds to
test).
Of course you can also set the main clock frequency (internal or external
crystal) as well.
PIC Timer 0
This has an 8 bit prescaler and an 8 bit timer and can be driven from an
external clock.
Prescaler : 8 bit
Timer register : 8 bit
Link to Timer 0
calculator
Note: In 18F Series devices Timer 0 is enhanced to be 16 bit capable
(although it is backwards compatible with the 8 bit version).
PIC Timer 1
This has a 4 bit prescaler and an 16 bit timer and can be driven from an
external clock. It can also be driven from a slow speed crystal e.g. 32kHz.
Prescaler : 4 bit
Timer register: 16 bit
Link to Timer 1
calculator.
Note: In 18F Series devices Timer1 has enhanced 16 readability (High byte is
double buffered to allow easy, exact, capturing of the timer register value.
PIC Timer 2
This has a 4 bit prescaler and an 8 bit timer and an 8 bit period register
and is only driven from the internal clock (Fosc/4)
Prescaler : 2 bit (1:1, 1:4, 1:16)
Timer register: 8 bit
Period register : 8 bit
Postscaler : 4 bit (1:1 to 1:16 inclusive)
Note: In 18F Series devices Timer 2 has the same structure as in 16F versions.
Link to Timer 2 calculator.
Arduino EEPROM: How to use it and How to presrve the life of EEPROM. Two examples sketches to save multiple values to EEPROM.
A tutorial on using the ADS1115 precision 16 bit ADC for low power use.
Learn how to use the TP4056 properly. There's a right, and a wrong way, to use it to safely charge Lithium Ion batteries.
The DW01A chip is a Lithium Ion battery protector commonly used on TP4056 boards. Find out Exactly how it works and how to use it the correct way.
For Arduino string operations you can use Object Class Strings or C style strings but which should you use? Also find out how to decode commands and control variables in your programs using strings.
Real Time Clock Design (FREE): A Free and Complete RTC design using the DS1307 and a PIC micro (16F88) also re-targetable. This PIC project uses an I2C Clock chip and 7-segment display to create a fou…
New! Comments
Have your say about what you just read! Leave me a comment in the box below.