Schematics and C code for a 0-5V PIC LCD Volt Meter.

This PIC LCD volt meter project uses a PIC micro and an HD44870 LCD display. The analogue input is taken directly to the analogue input pin of the microcontroller without any other processing.

lcd volt meter

The basic input range is from 0V to 5V.


The LCD volt meter uses the microcontroller power supplies as reference voltages and so it is not likely to be very accurate (e.g. a 7805 5V regulator has an accuracy of 4%).

To improve accuracy add a voltage reference and feed the reference voltage to the Vref input on the PIC which is into RA3 ( change the control register values in the ADC to use the Vref). This project simply provides a quick and easy way of measuring volts without circuit complexity.

Voltage range 0V - 5V
Input signal level TTL
Maximum input impedance 2k5

The project mainly shows how to control and setup the software to read an analogue value from the first analogue port RA0.

Note when designing using the analogue inputs its a good idea to start from AN0 as there is only a limited set of ways that more analogue ports can be selected for use (see the chip data sheet - analogue inputs).

Warning : This lcd volt meter is only as accurate as the power supply. If you need good accuracy use a voltage reference fed into the ADC analogue reference pin. This will also requires enabling that feature in the microcontroller in the software.

Since you can't use a 5V refrence (if using a 5V supply) then use a 2.5V reference and divide the input using a vlotage divider by 2 - to get back to 0-5V reading range - or divide by more to allow higher voltage input. Don't forget to add protection on the microcontroller inputs i.e. 5V clamp diodes (to stop damage if too high an input is put to the top of the divider).

Compiler Mikroelectronika MikroC Compiler Free!
Target 16F877A (retargetable to other PICs that have Analogue input AN0).
Software level Easy.
Software notes Using fixed point long instead of floating point.
Hardware level Easy.
Hardware notes LCD will work with LVP (if PGM pin is pulled high).
Project version 1.01
Project files Enter your details to get the Download Link
and get the microcontroller newsletter:

(Note: Your email is safe it will never be sold or rented).
You will get All the C source code and hex file.

Note: Check your email for the project code download link.

PIC lcd volt meter using HD44780 LCD.
(Click diagram to open a pdf).
lcd volt meter using LCD and AN0.

TIP: This code uses fixed point which allows you to save programming memory space i.e. instead of floating point which uses up a lot of programming memory.

PIC lcd volt meter Hardware

You can use any PIC microcontroller that has an ADC and enough memory to hold the program.

The LED is pulsed after every ADC acquisition to indicate that the processor is alive - so you can tell if the software is active.

You can program the PIC in circuit through the ICSP connector.

lcd volt meter schematic circuit

LCD volt meter Software

Project files for the PIC frequency counter circuit

Compiler project files:

C Source files:

Output files:

For a tutorial on compiling these lcd volt meter files click here.

You can recompile the lcd volt meter files if you want examine code operation (using the built in simulator) or change the source code. Note the hex file is contained in the download.



The code is simple showing how to set up the ADC using direct control (it does not use built in routines) so that the code can easily be ported to other compilers.

It enters a continuous loop collecting ADC samples and displaying them on the LCD.

The only complexity is that the code uses fixed point maths so that it avoids using floating point variables (saving memory space). Long variables are used to scale the output result. This statement


lng = (ADC_ip * 5000L) >> 10;

Scales the ADC input value to 5000 and then divides by 1024. The output is a number between 0 and 5000. e.g. for a 2.5V input voltage the ADC will read 512. 512 * 5000 is 2560000 Dividing by 1024 gives 2500. So using the fixed decimal point between the 2 and the 5 gives the final result displaying "2.500"

The code converts the 10bit ADC number into a displayable voltage reading.


Note: The circuit does not feed in an accurate voltage to Vref+ so the accuracy of the reading is only as good as the power supply voltage regulator (not shown on circuit diagram) - this will usually be a 7805 standard 5V regulator. This has an accuracy of 5% so the displayed output will be wrong by 5%. If you want to calibrate the output to get a more realistic a reading you can set the scale factor in the software to match the 7805 output voltage value.

All you do is use a multimeter to measure the power supply (mine read 4.91V) then instead of the 'ideal' scale factor of 50000L change it to match the multimeter reading e.g. for 4.91V use the statement

lng = (ADC_ip * 49100L) >> 10

This scales the maximum ADC output to 4.91 (The maximum reference value) and displayed readings will now match the multimeter readings. For production use this is not a good idea and you would be better off adding a voltage reference.


This design provides a quick and easy way to measure voltage with minimal components but for better accuracy use a voltage reference.

Note: To smooth the input signal use a capacitor e.g.. 100nF or use software averaging in the code.

New! Comments

Have your say about what you just read! Leave me a comment in the box below.

Privacy Policy | Contact | About Me

Site Map | Terms of Use

Visit our Facebook Page:

   Click Here

Recent Articles

  1. INA219: A voltage and current sensing chip using I2C

    INA219: How to use the INA210 for maximum accuracy in current and power measurements

    Read more

  2. Arduino Oversampling: How to Get More ADC Bits with No Extra Hardware!

    Arduino oversampling is a technique to increase ADC resolution by reading more samples then decimating. It really does work!

    Read more

  3. How to use the ADS1115

    A tutorial on using the ADS1115 precision 16 bit ADC for low power use.

    Read more

  4. Arduino Analog Output...Easy analog output generation

    Arduino Analog Output: How to create the most accurate PWM analog ouput and how to create analog PWM sine waves.

    Read more

  5. DigitalWrite and equivalent fast macros. Speed up your code!

    Find out how digitalWrite() works...Now use 17x Faster macros!

    Read more

  6. The TCS230 Color Sensing Chip: How it works and how to use it.

    How to use the TCS230 (/TCS3200) Color detector chip and easily add it to any of your projects.

    Read more

Readers Comments

"I wanted to thank
you so so so much
for all the information
you have provided in
your site it's


- Ranish Pottath

"This site really is
the best and my favorite.
I find here many useful
projects and tips."

- Milan


"Awesome site,
very, very easy and nice
to navigate!"

- Matt

Learn Microcontrollers

"Interested in

Sign up for The
Free 7 day guide:


"I am a newbie to PIC
and I wanted to say
 how great your
site has been for me."

- Dave


"Your site is a great
and perfect work.

- Suresh


"I couldn't find the correct
words to define
yourweb site.

Very useful, uncovered,
honest and clear.

Thanks so much for
your time and works.

- Anon

Back to Top