Become a subscriber (Free)

Join 29,000 other subscribers to receive subscriber sale discounts and other free resources.
Don't worry -- youre-mail address is totally secure. I promise to use it only to send you MicroZine.

Arduino ADC

The Arduino ADC or Analogue to Digital Converter takes an input voltage and converts it into a digital value. With the standard setup you can measure a voltage between 0V and 5V with a resolution of 4.9mV so you can get a lot of detail when measuring analogue voltages.

Arduino Analog Pins

There are six pins on the Arduino Uno (shown below A0 ~ A5) that can be selected for an ADC measurement; A multiplexor feeds one of the six analogue input pins into the ADC.

To read an analogue voltage from pin A4 you use the following function:


Setting of the multiplexor is done in that function for you automatically.

arduino uno analogue pins

Arduino ADC Specification

Arduino Uno/Nano
  Voltage Supply (Vs)
 1V8 ~ 5V5
Built in
8 bit
  Absolute accuracy (Including INL, DNL,
  quantization error, gain,offset error) [1]
  Offset error (ADC, DAC) [1]
  INL [1]
0.50 LSB
  DNL [1]
0.25 LSB
  Gain error [1]
  Sampling frequency
  Operating temperature
-40°C ~ 85°C
            [1] for 4V operation and 200kHz clock.

Arduino ADC size

The Arduino ADC has a 10 bit converter, and that means there are 1024 distinct values that can be returned as a result from the ADC:

since  pow(2,10) = 2^10 = 1024

Divide by 1023 or 1024?

There is always some confusion about whether to divide by 1024 or 1023 to get the voltage value for each bit.

However the ATMega328P datasheet gives the following formula:

ADC= (Vin*1024)/Vref

re arranging that gives:

Vin = (Vref/1024)*ADC

Arduino ADC resolution at 5V

So for Vref=5V, an ADC value of 1 would result in a Voltage step of 4.88mV - the value of voltage for one LSB - this is the Arduino ADC resolution for a 5V Vref.

Note however that the maximum ADC value is 1023 so the maximum ADC value that can ever be reported is:

1023 * (5/1024) = 4.9951V

As it states in the datasheet:

"0x000 represents analog ground, and 0x3FF represents the selected reference voltage minus one LSB."

The reason that you will see the wrong equation on the web is so that the output "feels" right i.e. 1023*(5/1023) = 5.000. This is the wrong equation to use and means there is an offset added to all values.

How the Arduino ADC works

This ADC is known as a successive approximation ADC and requires several clock cycles to zoom in on the correct ADC output.

The ADC converter compares the input analogue voltage to a portion of the Vref voltage using a divide by two sequence. The sample and hold capacitor is charged to the input voltage and then the input disconnected so that the same voltage is measured throughout the conversion process.

It first checks whether the input voltage is higher or lower than half of the Vref voltage, by using a DAC to generate half the reference voltage. The DAC voltage is the fed into a comparator.

The output of the DAC forms the high bit of the result (stored in a shift register). If the input voltage is higher then the bit is one, otherwise the bit zero.

If the input is lower than half of the Vref voltage then control logic generates a DAC voltage that is 1/4 the reference voltage. The comparison is made again and this forms the next bit in the ADC output.

The process continues until all the bits are collected.

ADC clock

For the Arudino the conversion process takes 13 cycles of the ADC clock - which you set using a prescaler in the ADC module. The ADC clock must be between 50kHz and 200kHz so you choose the prescaler value to get a valid ADC clock.

The ADC clock prescaler can be set as a 2n division from 2 to 128. You obviously want the fastest conversion rate for the clock in use so for a 16MHz system clock you would calculate 16e6/200e3 = 80 so the closest could be 64.

However 16e6/64 is 250kHz and is too big. Therefore choosing a divisor of 128 must be used so the ADC clock will be 16e6/128 = 125kHz.

A conversion will take (check these settings are used in the Arduino Source code! - I have not - they are extremely likely though)

Arduino Uno sampling rate (16MHz crystal)

1.0 / ( 13 * 1.0/125e3) = 9615Hz

Actually, reading the Arduino reference page it says the sample rate is about 10kHz so this calculation matches that information.

So the maximum Arduino ADC sampling rate is:


Changing the Arduino Sampling Rate

ADC clock calculations

If you set the system clock to 20MHz you get 20e6/128 = 156250.0 - for a bit faster conversion.

Interestingly if you go the other way as a design decision you want the fastest ADC clock rate of 200kHz, then you have to ask the question:

"What crystal clock results in a 200kHz rate after ADC prescaling?" i.e.

Xtal = 200e3 * prescale - trying 64 gives 12800000 or 12.8Mhz

12.8e6/64 = 200e3

So reducing the Xtal clock allows a faster conversion rate of 200kHz!

Giving a max samping rate of:

1.0 / ( 13 * 1.0/200e3) = 15384Hz (THIS IS FOR  A 12.8MHz XTAL)

...and yes you can get crystals made to your spec! - but you'll probably use a 12MHz crystal, as its easier to get, so the sample rate above will be a bit lower.

Example operation of 4bit ADC

This is a diagram of the action or the successive approximation ADC using Vref as 5V. Here a 4 bit ADC is shown but the principle is the same however many bits are used.

4 bit ADC Operation

Initially the input voltage (Vin) is greater than the starting value of the DAC voltage (set by initial DAC value of B1000) so this bit is kept. In the next processing period the DAC output is set to B1100 but in this case the DAC voltage becomes greater than Vin (and that bit is discarded).

The next two DAC values are kept because the DAC voltage is always lower than Vin and you end up with an ADC output value of B1011 - the ADC successively approaches the final value.

Example of successive approximation 4bit ADC

The final output DAC voltage is 2.5 + 0.625 + 0.3125 = 3.4375V

The advantage of the successive approximation ADC is that it is deterministic i.e. it always takes the same amount of time. Consider using a binary counter as the input to the DAC that always started at zero and counted up. For a low Vin it would take a few counts to find the value and for a high Vin it would take lots of counts (possibly 255 cycles for an 8 bit DAC) i.e. it would take different times depending on the input voltage!

Note: As the number of bits in the ADC increases so does the acquisition time.

Arduino Uno ADC resolution

As we saw earlier the resolution of the ADC, when Vref=5V is 4.88mV per step.

The Arduino analogRead resolution which is the same as the resolution of the ADC is governed by two things

  1. The ADC size - 10bits for the Uno.
  2. The ADC reference voltage.
Note: The arduino function analogReadResoution() allows the analogRead() function to return a different number of bits.

Some of the Arduinos e.g. DUE have 12 bit ADCs built in, so returning 10bits will keep the code in these boards compatible with other Arduino boards that only have a 10 bit ADC. This is the default operation - to get 12 bits you will need to use analogReadResoution(12). 

ADC bits

Using an ADC with more bits makes the the minimum step size (LSB) smaller to give higher resolution. The Arduino Uno is fixed at 10 bits.

ADC Reference voltage

The other way to affect the arduino ADC resolution is to use a different reference voltage. The reference voltage is the full-scale voltage applied to the ADC converter operating as described above.

Say you changed the Vref value to 1V then the minimum LSB you could detect would be 1/1024 or


TIP: You can select the internal 1.1V reference and this will give a step size of about 0.1V: Exact calculation is 1.1/1024 = 0.00107V ~0.11mV per step . This does mean the ADC can't read voltages above 1.1V - they will just return 1024.

Example ADC Use

Connect a 10k potentiometer with wiper (middle) to pin A0 and one end to 5V, and the other end to Ground. This example simply uses the arduino analog read function analogRead() to read data from the specified analogue pin.

Start the serial monitor, and observe the led period. The on-off time is twice the value of the analogue value so it varies from 2s to ~0.

  Analog Input

  Demonstrates analog input by reading an analog sensor on analog pin 0 and
  turning on and off a light emitting diode(LED) connected to digital pin 13.
  The amount of time the LED will be on and off depends on the value obtained
  by analogRead().

  The circuit:
  - potentiometer
    center pin of the potentiometer to the analog input 0
    one side pin (either one) to ground
    the other side pin to +5V
  - LED
    anode (long leg) attached to digital output 13
    cathode (short leg) attached to ground

  - Note: because most Arduinos have a built-in LED attached to pin 13 on the
    board, the LED is optional.

  created by David Cuartielles
  modified 30 Aug 2011
  By Tom Igoe

  This example code is in the public domain.

int sensorPin = A0;    // select the input pin for the potentiometer
int ledPin = 13;      // select the pin for the LED
int sensorValue = 0;  // variable to store the value coming from the sensor

void setup() {
  // declare the ledPin as an OUTPUT:
  pinMode(ledPin, OUTPUT);

void loop() {
  // read the value from the sensor:
  sensorValue = analogRead(sensorPin);
  // turn the ledPin on
  digitalWrite(ledPin, HIGH);
  // stop the program for <sensorValue> milliseconds:
  // turn the ledPin off:
  digitalWrite(ledPin, LOW);
  // stop the program for for <sensorValue> milliseconds:

Other Uses for Arduino ADC pins

You can use an ADC pin as an:

  • Analogue input,
  • A digital input,
  • A digital output.
Note: Other functions can be shared by a pins e.g. A5 is also SCL.

The internal structure of an ADC input pin allows the pin to be multi functional. Some people get confused using an ADC pin as a digital input or output but it is perfectly valid to do so (as long as it has digital logic driving the input signal).

The only caution on using ADC pin as a digital input is that if you have designed the external circuit for measuring an analogue voltage, that voltage could cause the digital input to overload.

In CMOS circuits there are two FETS, a high fet and a low fet,  connected to the a common output - their inputs are also connected. These act as current source and sinks - to allow a large fan out. In normal use the logic driving these inputs is logic high or low. If you drive them at the mid range voltage (think analogue input at Vcc/s) then you are turning both on at the same time. Therefore lots of current flows!

To avoid this situation for a "digital only" input you tie the input to the high voltage using a pull-up, and of course the Arduino has internal pull-ups provided for just this operation.

The reason for the pull-up is that bias voltages in the CMOS circuit (FET circuit) will set the input to some floating value which could turn on both FETs. So to be certain this does not happen, enable the pull-up on each digital input pin.

You can see that if external analogue circuitry drives the inputs to mid range, there will be a problem if you set the pin to digital input. So avoid doing this!

New! Comments

Have your say about what you just read! Leave me a comment in the box below.

Privacy Policy | Contact | About Me

Site Map | Terms of Use

Visit our Facebook Page:

   Click Here

  1. How to use the ADXL345 for movement sensing and more.

    With the ADXL345 acellerometer you can detect up to 16g! You can also find out how to use it for tap detection and more.

    Read more

  2. How the HMC5883L 3-axis digital magentomter works

    HMC5883L - How make a digital compass, Find out the differences between the HMC5883L and the QMC5883L and whether they are compatible.

    Read more

  3. ESP8266 Arduino IDE setup.

    Easily use an ESP8266 with the Arduino IDE and program your first sketch into the ESP8266

    Read more

  4. How to use the MCP4725, a versatile and tiny (SOT-23-6) analogue output device

    The MCP4725 chip is a 12 bit DAC with memory that outputs voltage that you can use for many dfferent purposes. Find out what they are in this page.

    Read more

  5. PCF8591: An 8 bit ADC you can easily connect using I2C

    PCF8591: A four input ADC with single DAC. How good is this 8 bit ADC, and should you use it in your next project?

    Read more

  6. How to use an arduno Nano as an ISP (In System Programmer)

    Arduino Nano ISP: How to program an ATmega328P using an Arduino Nano as the ISP programmmer. One common problem: Programming a sketch into the chip without a reset control - solved here.

    Read more

Readers Comments

"I wanted to thank
you so so so much
for all the information
you have provided in
your site it's


- Ranish Pottath

"This site really is
the best and my favorite.
I find here many useful
projects and tips."

- Milan


"Awesome site,
very, very easy and nice
to navigate!"

- Matt

Learn Microcontrollers

"Interested in

Sign up for The
Free 7 day guide:


"I am a newbie to PIC
and I wanted to say
 how great your
site has been for me."

- Dave


"Your site is a great
and perfect work.

- Suresh


"I couldn't find the correct
words to define
yourweb site.

Very useful, uncovered,
honest and clear.

Thanks so much for
your time and works.

- Anon

Back to Top