Clock accuracy in ppm

Crystal Clock accuracy is defined in terms of ppm or parts per million and it gives a convenient way of comparing accuracies of different crystal specifications.

Note:

  • ppm parts per million.
  • ppb parts per billion.

The following headings give practical calculations showing the typical errors you will encounter when using a clock of a specific type with a specific accuracy.


How good is a 1% clock ?

If you look at a day's worth of timekeeping then you have 24 x 60 x 60 = 86400 seconds in a day.  So the maximum error after a day has passed is 1% of 86400 = 864 seconds = 14.4 minutes!

Error: 14.4 minutes error per day.

How good is a typical crystal ?

A typical crystal has an error of 100ppm (ish) this translates as 100/1e6 or (1e-4).

    Number of seconds in a day = 24*60*60 = 86400

So the total error on a day is 86400 x 1e-4= 8.64 seconds per day. In a month you would loose 30x8.64 = 259 seconds or 4.32 minutes per month. 

Error: 8.64 seconds per day

How good is a watch crystal ?

A watch crystal has an error of 20ppm (ish), but you have to design the board layout well, this translates as 20/1e6 (2e-5) which  gives an error over a day of 86400 * 2e-5 = 1.73 seconds per day so in a month it looses 30x1.72 = 51 seconds or 1 minute a month (approx).  

Error: 1.73 seconds per day.

One of the other factors in a wrist watch is that you wear it on your wrist - and the human body is at a constant temperature.  Crystals have a temperature coefficient graph meaning that another source of error is temperature (This is why you can buy an OCXO or Oven Controlled Crystal Oscillator - that generates heat and keeps a constant temperature).  The watch crystal will be better because you keep it at a constant temperature!

How good is an OCXO ?

An OCXO is an Oven Controlled Crystal Oscillator. It is a crystal sealed in a small chamber with a controlled heating element inside to maintain a constant temperature.

A typical spec might be ±1 x 10-9 (1ppb) so the error after a day would be 86.4us and after a month 2.6ms (2.6e-3 seconds or 2.6 thousandths of a second!).  They are not quoted in ppm as it becomes inconvenient to write e.g. this OCXO has a ppm value of 0.001 ppm or 1ppb.

Error: 84.6us per day.

To lose 1 second takes: 32.4 years; (1.0/84.6e-6/365)

Note: there are many types designed for many different applications and
all costing different amounts!

How good is a rubidium oscillator ?

This is also known as an atomic clock.

A rubidium clock has an accuracy of about ±1 x 10-12 so the error after a day would be 86.4ns (84e-9 seconds 84 billionths of a second!) so the error after a month would be 2.6us.  Again using ppm is also inconvenient for writing : 0.000001ppm or 0.001ppb

Error: 86.4ns per day.

Error: 2.6us per month.

To lose 1 second takes: 32,384 years; (1.0/84.6e-9/365)

How good is a cesium oscillator ?

This is also known as an atomic clock.

Cesium beam atomic clocks are stable to 1 x 10-13 (8.64ns/day 8 billionths of a second!) or 259ns (259e-9 seconds) a month (ppm is 0.0000001ppm ! or 0.0001ppb).

Error: 8.46ns per day.

Error: 0.259us per month.

To lose 1 second takes: 323,844 years; (1.0/8.46e-9/365)

Note: A Cesium fountain is stable to 1 x 10-15.

     To lose 1 second takes: 32,384,400 years; (1.0/8.46e-9/365)*100

Comparison of Oscillator Accuracy

Type Accuracy (ppm/ppb) Accuracy Aging /
10 Year
Aging / 10 Year
Crystal 10ppm-100ppm 10-5 - 10-4 10-20ppm 10x10-6
TCXO 1ppm 10-6 3ppm 3x10-6
OCXO 5-10Mhz 0.02ppm
(20ppb)
2x10-8 ~0.2ppm (200bpp) 0.2x10-6
OCXO
15-100MHz
0.5ppm
(500ppb)
5x10-7 ~10ppb 1x10-8
Rubidium Atomic 1x10-6ppm (0.001ppb) 10-12 0.005ppm (5ppb) 5x10-9

Some TCL code for looking at ppm

# Calculate the ppm given a nominal frequency and actual frequency.

# ppm? 20e6 19998485 Returns 75.75 ppm
proc ppm? { nomf f } {
    return [expr (abs($f-$nomf)/$nomf)*1e6 ]
}

# given ppm return decimal e.g. ppm 200 is 0.0002
proc ppm { ppmv } { return [expr $ppmv/1e6] }

# given ppb return decimal e.g. ppb 10 is 1e-8   
proc ppb { ppbv } { return [expr $ppbv/1e9] }

# ppm range show max and min of freq:nomf and ppm value   
proc ppm_r { nomf ppmv } {
    puts [expr $nomf+([ppm $ppmv]*$nomf) ]
    puts [expr $nomf-([ppm $ppmv]*$nomf) ]
}

set secs_per_day [expr 24*60*60 ]

Download TCL from Active state (free) and download tkcon. Double click tkcon to start it and paste the above procedures into tkcon, then use the them by typing in commands at the tkcon command prompt (Turn on calculator mode in preferences):

e.g. ppm? 20e6 19999391

results in 30.450000000000003

i.e. It shows you the ppm value: 30ppm for given nominal frequency and actual measured frequency.




New! Comments

Have your say about what you just read! Leave me a comment in the box below.




Privacy Policy | Contact | About Me

Site Map | Terms of Use



Visit our Facebook Page:

   Click Here



Recent Articles

  1. Arduino Oversampling: How to Get More ADC Bits with No Extra Hardware!

    Arduino oversampling is a technique to increase ADC resolution by reading more samples then decimating. It really does work!

    Read more

  2. How to use the ADS1115

    A tutorial on using the ADS1115 precision 16 bit ADC for low power use.

    Read more

  3. Arduino Analog Output...Easy analog output generation

    Arduino Analog Output: How to create the most accurate PWM analog ouput and how to create analog PWM sine waves.

    Read more

  4. DigitalWrite and equivalent fast macros. Speed up your code!

    Find out how digitalWrite() works...Now use 17x Faster macros!

    Read more

  5. The TCS230 Color Sensing Chip: How it works and how to use it.

    How to use the TCS230 (/TCS3200) Color detector chip and easily add it to any of your projects.

    Read more

  6. How to use the ADXL345 for movement sensing and more.

    With the ADXL345 acellerometer you can detect up to 16g! You can also find out how to use it for tap detection and more.

    Read more



Readers Comments

"I wanted to thank
you so so so much
for all the information
you have provided in
your site it's

SUPERB and FANTASTIC."

- Ranish Pottath

"This site really is
the best and my favorite.
I find here many useful
projects and tips."

- Milan

bursach<at>gmail.com<

"Awesome site,
very, very easy and nice
to navigate!"


- Matt
matt_tr<at>
wolf359.cjb.net


Learn Microcontrollers

"Interested in
Microcontrollers?"

Sign up for The
Free 7 day guide:

FREE GUIDE : CLICK HERE


"I am a newbie to PIC
and I wanted to say
 how great your
site has been for me."


- Dave

de_scott<at>bellsouth.net

"Your site is a great
and perfect work.
congratulations."


- Suresh

integratredinfosys<at>
yahoo.com

"I couldn't find the correct
words to define
yourweb site.

Very useful, uncovered,
honest and clear.

Thanks so much for
your time and works.
Regards."


- Anon

Back to Top