DW01A Battery protection Chip

The DW01A chip is a battery protection device for a single cell Lithium Ion battery and it protects the cell from over and under charging, reverse connection and short circuit. You can typically find this chip on TP4056 breakout boards (Lithium ion charger chip).

Battery Protection

On the battery side, it protects the battery from over-voltage (charging) or under-voltage (discharging). If the voltage goes too low you may not be able to recover the battery. If the voltage goes too high there is a risk of thermal runaway.

Keeping a Lithium ion battery from charging to too high a voltage or too low a voltage ensures that the battery is kept in a safe operating area.

This device is a back stop device with a high over-voltage and low under-voltage setting.

Load Protection

On the load side it protects from short circuits, high current, short circuit current and reverse charger connection.

Tip: The correct usage of the DW01A is to include it as part of a battery pack. It has reduced functionality when used on the TP4056 board.

DW01A Block Diagram
DW01A Battery protector block diagram
        [Source: The DW01A datasheet]

The DW01A requires an external dual FET to control the ground line to the battery. By using the FET, the ground line is disconnected during current error conditions (Short circuit, over discharge, over charge). This isolates the Lithium battery until the load is removed (in the case of a short circuit).

The DW01A also has extended voltage limits (above and below normal voltage charging values) to protect from overcharging and overdischarging. It also has low standby current 3uA when inactive, so it does not drain the battery significantly during storage.

DW01A Features

Charger input protection

The CS pin is connected to the negative terminal of the charger input (via a 1k⦠resistor) and performs the following functions:
  • Short Circuit detector.
  • Over current detector.
  • Charger Detector.
  • Reverse charger detection (overstress high current?).

Battery monitoring

VCC and GND are connected across the battery where two voltages are detected:

  • Overcharge Detector (battery voltage too high).
  • Overdischarge Detector (battery voltage too low).

Battery Over Current Protection

Protection is provided using the two control pins OD and OC (which stand for over discharging and over charging respectively). These two controls attach to the gates of two MOSFETS and stop current flow to the battery if there is a problem.

Protection levels

Overcharge protection voltage: 4.3V (typ) ± 50mV
Overcharge release voltage: 4.1V (typ) ± 50mV
Overdischarge protection voltage: 2.4V (typ) ± 100mV
Overdischarge release voltage: 3.0V (typ) ± 100mV

Overcurrent detection voltage: 0.15 (typ) ± 30mV
Short circuit detection voltage: 1.35V (typ).

Note: The above over current and short circuit voltages are measured across the on-resistance of the MOSFET.

DW01A Datasheet

Download the battery protection IC datasheet here.

How the DW01A works

The crucial part of the DW01A operation is the controlled dual MOSFET (N Channel); Specifically the RDS(ON) resistance of the N Channel MOSFET.

In the datasheet it states that " the threshold current for overcurrent detection is determined by the turn-on resistance of the charge and discharge control MOSFETs. "

There are problems in designing a current detection device this way, because as it also says in the datasheet:

" turn-on resistance of the MOSFET changes with temperature variation due to heat dissipation, It changes with the voltage between gate and source as well "

It is designed this way because it is a very cheap method.

However there are three points to this:
  • The threshold voltage levels fall outside the normal charging voltages of a battery charger, and so do not interfere with the normal charging process.
  • The exact short circuit current value does not matter (as long as it is reasonable i.e. not 100A! - it can be made to be 3A (see calculations below).
  • The current limit reduces as the MOSFET's selected RDS(ON) gets worse - this is a good; If you use a high RDS(ON) value, the current needed to trigger the short circuit is smaller. Also increasing temperature increases RDS(ON).

This is a fail safe device, so as long as the values chosen fall outside the normal operating state of the charging battery, it will provide short circuit protection even if the exact charging-cut off value changes with temperature and voltage.

You should simulate, analyse and test the MOSFET operation to make sure it is acceptable for your application.

Dual MOSFET N Channel Datasheet

8025A MOSFET Datasheet

8205A MOSFET Current Limit

Using RDSON as the Current Limit

The current limiting voltage threshold is detected by a comparator, when the voltage at the CS pin reaches 150mV. The comparator voltage will be reached when the voltage drop across the resistance of the two (switched on) MOSFETs reaches 150mV - this is caused by more current flowing through the two MOSFETS and is therefore the voltage drop across 2 x RDS(ON).

You can find RDS(ON) values in Figure 6 of the datasheet for the 8205, which is labelled "Rdson On-Resistance(mΩ) vs ID- Drain Current (A)" and shows the curves for various Vgs values.

Since the battery voltage is close to 4.5V using that curve gives RDS(ON) as 20m⦠which results in a short circuit current of 3.75A (0.15/(2*20e-3)).

When the battery discharges it will be closer to 2.5V giving RDS(ON)as 25m⦠resulting in a short circuit current of 3A (0.15/(2*25e-3)).

Once triggered, the DW01A the discharge MOSFET (OD) is turned off. It is only released when the load is removed.

Two Overcurrent Threshold levels

There are two over discharge values (the one above) 150mV and 1.35V. The reason for the second one is that both are associated with activation delays. For the 150mV one the delay is 10ms, while for the second the delay is 5us.

So for an extremely large short circuit the activation delay is much faster.

When the short circuit current detector has been activated, you, must remove the load, before the DW01A allows current to flow again (OC MOSFET turned on).

DW01A Circuit Schematic

Correct use of the DW01A

The circuit below shows how the DW01A chip is supposed to be used:

Typical circuit using the DW01A

DW01A typical lithium battery protection circuit
      [Source: The DW01A datasheet]

It is in fact, supposed to be attached as part of battery pack making a single unit with the battery and the DW01A chip.

This is true because of the following:
  • The CS pin protects from reverse connecting of a charger.
  • Voltage limits for over and under voltage detection are outside normal charging / discharged levels. They are specified to be extreme values.
  • Latchup protection when a charger is connected under over discharged condition.
  • Operating current is so low it won't discharge the battery if left in place attached to the battery.
When used as part of a battery pack it provides protection from the charger connected to BATT+ and BATT-, and in this configuration provides reverse polarity protection from plugging in a charger the wrong way round and even plugging in a totally inappropriate and dangerous charger e.g. a NiCad or NiMh charger (do not try this).

TP4056 incorrect use of DW01A

I am emphasizing the above correct usage of the chip as it is not used in this way for the TP4056 breakout board where it is used incorrectly (except for short circuit protection - but even that assumes the TP4056 is attached permanently which is wrong unless power sharing is implemented).

New! Comments

Have your say about what you just read! Leave me a comment in the box below.

Privacy Policy | Contact | About Me

Site Map | Terms of Use

Visit our Facebook Page:

   Click Here

Recent Articles

  1. The TP4056: Lithium Ion/polymer Battery Charger IC

    Learn how to use the TP4056 properly. There's a right way, and a wrong way, to use it to safely charge Lithium Ion batteries.

    Read more

  2. How to use the MCP4728, a versatile four channel DAC with built in voltage reference.

    The MCP4728 chip is a four channel 12 bit DAC, with memory that outputs voltage that you can use for calibration, anywhere you want a fixed voltage.

    Read more

  3. Secrets of the Hitachi HD44780 LCD: How to display text and bargraphs.

    Find out how to connect the Hitachi HD44780 and use it to display text and graphics in any of your projects.

    Read more

  4. INA219: A voltage and current sensing chip using I2C

    INA219: How to use the INA210 for maximum accuracy in current and power measurements

    Read more

  5. Arduino Oversampling: How to Get More ADC Bits with No Extra Hardware!

    Arduino oversampling is a technique to increase ADC resolution by reading more samples then decimating. It really does work!

    Read more

  6. How to use the ADS1115

    A tutorial on using the ADS1115 precision 16 bit ADC for low power use.

    Read more

Readers Comments

"I wanted to thank
you so so so much
for all the information
you have provided in
your site it's


- Ranish Pottath

"This site really is
the best and my favorite.
I find here many useful
projects and tips."

- Milan


"Awesome site,
very, very easy and nice
to navigate!"

- Matt

Learn Microcontrollers

"Interested in

Sign up for The
Free 7 day guide:


"I am a newbie to PIC
and I wanted to say
 how great your
site has been for me."

- Dave


"Your site is a great
and perfect work.

- Suresh


"I couldn't find the correct
words to define
yourweb site.

Very useful, uncovered,
honest and clear.

Thanks so much for
your time and works.

- Anon

Back to Top